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Several theories now exist to describe the probability distribution functions(PDFs) for the electric field
strength, intensity, and power of signals. In this work, a model is developed for the PDFs of the polarization
properties of the superposition of multiple transverse wave populations. The polarization of each transverse
wave population is described by a polarization ellipse with fixed axial ratio and polarization angle, and PDFs
for the field strength and phase. Wave populations are vectorially added, and expressions found for the Stokes
parametersI, U, Q, andV, as well as the degrees of linear and circular polarization, and integral expressions
for their statistics. In this work, lognormal distributions are chosen for the electric field, corresponding to
stochastic growth, and polarization PDFs are numerically calculated for the superposition of orthonormal mode
populations, which might represent the natural modes emitted by a source. Examples are provided of the
superposition of linear, circular, and elliptically polarized wave populations in cases where the component field
strength PDFs are the same, and where one field strength PDF is dominant.
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I. INTRODUCTION

A range of theories now exist to describe wave field sta-
tistics in inhomogeneous plasmas, including self organized
criticality (SOC) [1], scattering[2], turbulence[3], and sto-
chastic growth theory(SGT) [4]. Physically, the various
theories are differentiated by varying degrees of interaction
between the waves, particles, and background plasma. These
have the common feature of predicting probability distribu-
tion functions(PDFs) for the electric field strength. In this
work a stochastic model for the measurable Stokes param-
etersI, U, Q, andV is produced from the vector addition of
multiple wave populations. Each wave is assumed to be
transverse with the same angular frequencyv and wave vec-
tor k [5,6], but random phases and amplitudes. The Stokes
parameterI describes the intensity,r l =sÎU2+Q2d / I is the
degree of linear polarization, andv=V/ I is the degree of
circular polarization. Together, the setI, U, Q, V, (or I, U, r l,
v) fully describes the polarization of transverse waves. The
motivations for developing such a model are to extend sto-
chastic theories beyond electric field intensity predictions,
and to obtain predictions for the PDFs of the measurable
Stokes parameters for a model of superposed waves from
multiple sources.

The problem is formulated in terms of the superposition
of an arbitrary number of wave populations. Analytic expres-
sions are then developed for the superposition of two modes
with fixed but arbitrary axial ratios and polarization angles,
and probability distribution functions for the field strength
and phase. We focus on predictions for the superposition of
two orthonormal modes, which is also a convenient(and
natural) basis for treating emission from a source, such as a
plasma. Here, we do not address the physics of the plasma
source, nor do we consider mode conversion and propagation
effects. Rather, we answer the more fundamental question of
how to determine the polarization statistics of the superposi-
tion of two or more specified wave populations. This work
differs from the body of literature that has developed to de-

scribe the statistics of unpolarized[7] and partially and fully
polarized light [8–10] in that the PDFs of the component
electric fields are arbitrary(here, only results for a lognormal
distribution are presented), and that each wave population
can be decomposed into an orthonormal pair of modes with
fixed polarization angles and axial ratios.

Many phenomenological applications of the theory exist,
in which the polarization of wave emission is either mea-
sured or measurable. Examples include waves in the Earth’s
foreshock[11–13], polar cap[14], and magnetosheath[15],
type III solar radio bursts[16], and thermal noise in the solar
wind [12], all of which can be described by SGT. Another
possibility is the analysis and interpretation of polarity-
resolved pulsar data(e.g., Vela [17]). Non-SGT examples
include solar flare intensities, which obey a power-law dis-
tribution, consistent with self-organized criticality[18], and
cyclotron maser emission in theO andX modes on auroral
field lines, leading to polarized auroral kilometric radiation
[19]. Possible analogs also exist in laboratory plasmas,
where SOC has been invoked to describe properties of Lang-
muir probe measurements of plasma edge electrostatic fluc-
tuations[20].

This paper is organized as follows. In Sec. II, theories for
stochastic growth are briefly described, a stochastic descrip-
tion for the Stokes parameters is developed, and differences
between this model and those of earlier stochastic models for
the Stokes parameters explained in detail. Section III ana-
lyzes the superposition of two wave populations. Integral
expressions for the PDFs of the Stokes parameters are de-
rived, analyzed, and the numerical integration technique ex-
plained. In Sec. IV predictions for the PDFs are computed
for a range of polarizations and field strength distributions.
Finally, Sec. V outlines future work and contains concluding
remarks.

II. STOCHASTIC ANALYSIS OF POLARIZATION
PARAMETERS

Each of the theories mentioned in Sec. I predicts different
PDFs for the wave electric fieldE. Self-organized criticality
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[1], in which the wave-plasma system is driven away from
dynamical equilibrium by input of free energy, but relaxes
back via cascades triggered by the local onset of a instability
at some threshold, predicts power-law distributions[21].
Scattering by density irregularities yields Gaussian intensity
distributions [2], with intensity I ~E2. Power-law distribu-
tions are expected in strong turbulence; they become Gauss-
ian in very strong turbulence[22]. Finally, stochastic growth
theory [4], which we use as an example in Sec. IV, predicts
lognormal statistics, with

Psln Ẽd =
1

Î2ps
expS−

sln Ẽ − md2

2s
D . s1d

whereẼ=E/E0 is a normalized electric field strength,E0 is
the reference field, andm and s are the mean and standard

deviation in lnẼ, where ln is the natural logarithm. For no-

tational simplicity we hereafter setE0=1 V/m, such thatẼ is
a dimensionless quantity with value taking the magnitude of
the electric field(measured in V/m), and drop the tilde on all
normalized quantities.

A. Vector superposition model for polarization statistics

Our analysis of the polarization statistics of the vector
superposition of two or more wave populations builds on
earlier work by Cairnset al. [23], in which a vector addition
model was developed for the intensity. In their work two
populations of transverse electric field vectors with random
strengthsE1 and E2 and with random phase angle between
them were convolved to describe the superposition of two
signals. We generalize their analysis to consider the polariza-
tion of the superposition of multiple wave populations, each
written in the axial formulation.

In the axial-ratio formulation an arbitrary transverse elec-
tric field vector can always be written

E =
EeisF−vtd

Îg2 + d2
sgex + deyd, s2d

whereg and d are arbitrary complex coefficients,ex andey
are orthonormal coordinates,F is a phase, andk =ex3ey is
the direction of wave propagation. It can be shown[5] that
the unit vectorssex,eyd can always be rotated through an
anglef, such that the electric field can be rewritten

E =
EeisF−vtd

Î1 + T2
sTet + iead, s3d

in terms of new unit vectorsset ,ead, where the axial ratioT is
real. As time advances, the real projections of Eq.(3) trace
out an ellipse with axes alonget andea and phaseF. Figure
1 shows the coordinate geometry and the trajectory of the
electric field vector tip for a wave withT.0, and negative
phase. As time advances the wave propagates into the page,
while the wave vector rotates in a clockwise direction, and is
said to be right-hand(RH) elliptically polarized. In this work
we suppose that thei ’th wave population has fixed axial ratio
Ti and polarization anglefi, but random field strengthsEi
and phasefi with PDFsPsEid andPsFid, respectively.

The Stokes parameters can be defined by[24]

I = kExEx
* + EyEy

*l, s4d

Q = kExEx
* − EyEy

*l, s5d

U = kExEy
* + Ex

*Eyl, s6d

V = ikExEy
* − Ex

*Eyl, s7d

where the angular bracketsk l denote a time average over
many cycles of the wave.

The Stokes parameters satisfy

I2 = Q2 + U2 + V2. s8d

Using the electric field representation of Eq.(3), the Stokes
parameters are

I = E2, s9d

Q = E2ST2 − 1

T2 + 1
Dcos 2f, s10d

U = E2ST2 − 1

T2 + 1
Dsin 2f, s11d

V = E2S 2T

T2 + 1
D . s12d

For a single wave population with intensity distribution
PsE2d the PDF of the Stokes parameters can be immediately
computed by a change of variable, giving

PsId = PsE2d, s13d

FIG. 1. The rotation of an arbitrary transverse wave vector
through anglef can always be written as a polarization ellipse with
E the peak field strength, andF the phase. The wave propagates in
the k =ex3ey=et3ea direction, into the page. The mode drawn
here rotates in a clockwise direction, and has a negative phase.
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PsQd = PsE2dYU ]Q

]E2U s14d

=PsE2dUST2 + 1

T2 − 1
Dsec 2fU , s15d

PsUd = PsE2dYU ]Q

]E2U s16d

=PsE2dUST2 + 1

T2 − 1
Dcsc 2fU , s17d

PsVd = PsE2dYU ]V

]E2U = PsE2dUT2 + 1

2T
U . s18d

The PDF of the Stokes parameters of the sum of two or
more wave populations of the same frequency, each with
fixed and independent axial ratioTi and polarization angle
fi, but random field strength and phase differences with
PDFs PsEi

2d and PsFi −F jd, respectively, can found by a
change of variable, followed by integration over the compo-
nent field strength distributions and all but one of the phase
differences. UsingS as a label forI, U, Q, or V we have

PsS,F3 − F1, . . . ,Fn − F1,E1
2, . . . ,En

2d

3U ]sS,F3 − F1, . . . ,Fn − F1,E1
2, . . . ,En

2d
]sF2 − F1, . . . ,Fn − F1,E1

2, . . . ,En
2d
U

= PsF2 − F1, . . . ,Fn − F1,E1
2, . . . ,En

2d s19d

=p
i=2

n

PsFi − F1dp
j=1

nPsEj
2d, s20d

where independence of allFi −F1 andEj has been assumed.
Hence

PsSd =E PsF2 − F1dp
i=3

n

PsFi − F1dp
j=1

nPsEj
2d

3
dsFi − F1ddEj

2

U ]sS,F3 − F1, . . . ,Fn − F1,E1
2, . . . ,En

2d
]sF2 − F1, . . . ,Fn − F1,E1

2, . . . ,En
2d
U .

s21d

The addition of any number of same frequency, copropa-
gating, transverse electric fields can always be written in the
form of Eq. (2). As such, using the transformation of Eq.(2)
to Eq. (3) the superposed electric field vector will always
trace out an ellipse, and so the set of PDFs
hPsTd ,PsFd ,PsE2dj of the superposed waves provides an
equivalent and alternate stochastic description of the Stokes
parametershPsId ,PsUd ,PsQd ,PsVdj. In this work, we solve
for PDFs of the Stokes parameters, as this provides direct
comparison to measured quantities.

Finally, while the analysis in this section is applicable to
arbitrary polarization, we predict the Stokes PDFs for the
superposition of wave populations in pairs of orthonormal

modes, being a natural and convenient basis. For transverse
modes the orthonormality condition[5]

eM2
* sv,kd ·eM1sv,kd = 0 s22d

must be satisfied, whereeM1 andeM2 are the wave vectors of
the modes of polarization. Using the axial ratio formulation
[Eq. (3)] to represent the wave vectorseM1sv ,kd=E1/E1 and
eM2sv ,kd=E2/E2, Eq. (22) is equivalent toT1T2=−1 with
f=0 or T1=−T2= ±1. Here, we develop predictions for
hPsId ,PsUd ,PsQd ,PsVdj in terms of waves inn pairs of or-
thonormal modes. Theith wave population is described by
axial ratioTi, polarization anglefi, field strength PDFPsEid,
and phase PDFPsFid.

B. Earlier models of polarization statistics

It is almost 60 years since Hurwitz[7] first described the
statistics of unpolarized light: showing that the combination
of Ex and Ey component wave populations with identical
zero-mean Gaussian distributions for the fields yields a
Gamma distribution for the total intensity, and a uniform
distribution for the total degree of circular polarization. Since
that time research into the statistical properties of polarized
light and the Stokes parameters has steadily advanced(e.g.,
see [25] and references therein). Salient research includes
that of Barakat[8,9], who extended the analysis of Hurwitz
to study the statistics of partially polarized light, and more
recently that of Eliyahu[10], who showed that the analytic
expressions could be written more compactly by normalizing
to the intensity.

Eliyahu represented the electric field in terms ofEx andEy
component wave populations, with a joint PDF
PsuExu , uEyu ,Fx,Fyd which is nonseparable in the field
strengthsuExu and uEyu. Using a change of variables, integra-
tion over the real part ofEy, and the conditional probability
PsI uU ,Q,Vd=dsI −ÎU2+Q2+V2d, an expression for the joint
PDF PsI ,U ,Q,Vd of the Stokes parameters was obtained.
Finally, integration over the Stokes parameters yields expres-
sions forPsSd in terms ofSand its first-order moments. This
approach can sometimes yield simpler boundaries of integra-
tion as compared to the integration over the electric fields
and phase differences performed here, but with the disadvan-
tage that the properties of the predicted distribution function
cannot be simply related to those of the components. A com-
parison between approaches is outside the scope of this
work. Importantly, however, if the plasma modes are linearly
polarized then theEx andEy components in Eliyahu are sim-
ply related to those of the plasma. In this case, and providing
the average value ofV is zero, the joint PDF is separable in
the field strengths, and the analyses match.

In summary, the analyses of Hurwitz[7], Barakat[8,9],
and Eliyahu[10] differ from this work in two fundamental
respects. First, the representation of the electric field by su-
perposingEx and Ey fields with different field strength dis-
tributions has, in general, no simple interpretation in terms of
the component modes of the plasma. The exception is for the
superposition of linearly polarized modes in which the aver-
age value ofV is zero. In this instance, Eliyahu’s analysis is
a special case of our more general treatment. Second, Hur-
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witz, Barakat, and Eliyahu used a Gaussian PDF with zero
mean for each field strength. While only examples of the
combination of lognormal field distributions are presented
later, in the present work our method is not restricted to a
particular field strength distribution.

III. STOKES PARAMETERS FOR THE SUPERPOSITION
OF TWO STOCHASTIC WAVE POPULATIONS

A. Integral expressions for the PDFs
of the polarization parameters

While in this work we compute predictions only for the
Stokes parameters resulting from the vector superposition of
orthonormal mode pairs, it is nonetheless useful to retain the
formalism for the superposition of arbitrarily polarized pairs.
The advantage is that this generalization provides an analytic
description of the superposition of two pairs of orthonormal
modes in which each mode pair has a dominant component.
Without loss of generality, thesex,eyd coordinate axis can be
rotated such that the electric field of one wave may be writ-
ten in the axial-ratio formulation[Eq. (3)]. The second wave
vector can then be written in the frame of the first. In matrix
notation,

E1 =
E1e

isF1−vtd

Î1 + T1
2

sT1 i dSex

ey
D , s23d

E2 =
E2e

isF2−vtd

Î1 + T2
2

sT2 i dS cosf sinf

− sinf cosf
DSex

ey
D . s24d

The Stokes parameters for the superposition of the two
modes can then be computed, yielding

I = E1
2 + E2

2 + E1E2F sT1 + 1dsT2 + 1d
ÎsT1

2 + 1dsT2
2 + 1d

cossf + F1 − F2d

+
sT1 − 1dsT2 − 1d
ÎsT1

2 + 1dsT2
2 + 1d

cossf − F1 + F2dG , s25d

Q = E1
2ST1

2 − 1

T1
2 + 1

D + E2
2ST2

2 − 1

T2
2 + 1

Dcos 2f

+ E1E2F sT1 − 1dsT2 + 1d
Îs1 + T1

2ds1 + T2
2d

cossf + F1 − F2d

+
sT1 + 1dsT2 − 1d
Îs1 + T1

2ds1 + T2
2d

cossf − F1 + F2dG , s26d

U = E2
2ST2

2 − 1

T2
2 + 1

Dsin 2f + E1E2F sT1 − 1dsT2 + 1d
Îs1 + T1

2ds1 + T2
2d

3sinsf + F1 − F2d +
sT1 + 1dsT2 − 1d
ÎsT1

2 + 1dsT2
2 + 1d

3sinsf − F1 + F2dG , s27d

V =
2E1

2T1

1 + T1
2 +

2E2
2T2

1 + T2
2 + E1E2F sT1 + 1dsT2 + 1d

ÎsT1
2 + 1dsT2

2 + 1d

3cossf + F1 − F2d −
sT1 − 1dsT2 − 1d
ÎsT1

2 + 1dsT2
2 + 1d

3cossf − F1 + F2dG . s28d

Thus, each Stokes parameterS can be written

S= aSsT1,fdE1
2 + bSsT2,fdE2

2 + gSsT1,T2,f,cdE1E2

s29d

with aSsT1d, bSsT1d, andgSsT1,T2,f ,cd representing the co-
efficients ofE1

2, E2
2, andE1E2 in Eqs. (25)–(28), and where

c;F1−F2 is the difference in phases. For simplicity, theS
subscript is omitted where not needed below. Using the
method described in Sec. II, integral forms for the Stokes
PDFs for two sources can be written

PsSd =E PscdPsE1
2dPsE2

2ddE1
2dE2

2

U ]sS,E1
2,E2

2d
]sc,E1

2,E2
2d
U s30d

=E PscdPsE1
2dPsE2

2ddE1
2dE2

2

UE1E2
]g

]c
U , s31d

where

U ]sS,E1
2,E2

2d
]sc,E1

2,E2
2d
U = * ]S/]c ]S/]E1

2 ]S/]E2
2

]E1
2/]c ]E1

2/]E1
2 ]E1

2/]E2
2

]E2
2/]c ]E2

2/]E1
2 ]E2

2/]E2
2* = UE1E2

]g

]c
U

s32d

has been used. For givenS, E1, andE2 there are two solu-
tions for c: hence]g /]c takes both positive and negative
values. When integrating over the field strengths, care must
be taken to include both solutions. For the degree of circular
polarization,

Psvd =E PscdPsE1
2dPsE2

2ddE1
2dE2

2

usE1E2/Ids]gV/]c − v]gI/]cdu
. s33d

Finally, as the component wave populations are fully polar-
ized, it follows that the superposed wave population will also
be fully polarized(i.e., have an interpretation in terms of the
Poincaré sphere). That is, the degree of linear polarization is
related to the degree of circular polarization through Eq.(8),
recast as

r l
2 + v2 = 1. s34d

The PDF of the degree of linear polarizationr l =ÎU2+Q2/ I
can thus be computed directly from the PDF of the degree of
circular polarizationPsvd through a change of variable

Psr ld = PsvdYU ]r l

]v
U s35d
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=fPsvd + Ps− vdgUÎ1 − v2

v
U . s36d

B. Properties of the distribution functions

With expressions forPsSd andPsvd determined, it is con-
venient to introduce a new subscript notation for the PDF
[e.g., PS for PsSd], used hereafter to distinguish the PDF
from its argument. Prior to computation ofPS, it is worth
noting that certain properties of the distribution function do
not require quantitative calculation of the PDF. The qualita-
tive behavior ofPS at very small and very largeuSu values
can be probed by studying the ranges ofasT1d, bsT2d, and
gsT1,T2,f ,cd in Eq. (29). These terms satisfy the inequali-
ties uauø1, ubuø1, anduguø2. Hence, for givenE1 andE2,
S lies in the interval

sa − 1dE1
2 + sb − 1dE2

2 + sE1 − E2d2 ø Sø sE1 + E2d2.

s37d

For I, a=b=1, and so inequality(37) reduces tosE1−E2d2

ø I ø sE1+E2d2. This reveals a possible difference in behav-
ior of PI between low and largeI values. ForI values ap-
proachingsE1−E2d2, PI samplesPE1

and PE2
across a wide

range of field strengths. In contrast, forI values approaching
sE1+E2d2, PI samplesPE1

and PE2
chiefly at high field

strengths. Similar behavior is expected forPU, PQ, andPV at
small and largeuSu values. For smalluSu there existT1, T2, f,
andc values such thatPS samplesPE1

andPE2
over a wide

range of field strengths. In contrast, at highuSu, PS samples
PE1

andPE2
chiefly at high field strengths.

If the phases are random with a uniform distribution
PScscd=1/2p, the mean of the Stokes parameters for two
wave populations can be computed as follows:

kSl =E E E SsE1,E2,cdPSsE1,E2,cddE1dE2dc s38d

=E E E faE1
2 + bE2

2 + gscdE1E2g

3 PSE1
sE1dPSE2

sE2dPScscddE1dE2dc s39d

=kS1l + kS2l, s40d

where the integralegscdPScscddc=0 becausegscd is trigo-
nometric. Here, the PDFPSsE1,E2,cd is the joint probability
of E1, E2, andc.

Generalization of Eq.(40) to the result

kSl = o
i

n

kSil s41d

for multiple random phase sources is straightforward. The
result doesnot extend to expectation values for the degrees
of circular and linear polarization, because the integrals of
the cross field terms(e.g.,E1E2) in Eq. (38) are not zero.

C. Boundaries of integration

Calculation of the PDFs through integration overE1
2 and

E2
2 first requires the boundaries of integration in Eqs.(31)

and(33) to be established. For simplicity, we hereafter refer
to the parameter space defined byE1 andE2 asE space. For
a given E1, we note that each Stokes equation[Eqs.
(25)–(28)] is a quadratic inE2 with only one unknown,c
;F1−F2. In general, each Stokes equation of form given by
Eq. (29) can thus be solved forE2, giving

E2 = E1S− gsT1,T2,cd ± DsE1,Sd
2bsT2d D . s42d

Physical solutions forE2 require the discriminant

DsE1,Sd = ÎgsT1,T2,cd2 − 4bsT2dfasT1dE1
2 − Sg/E1

2

s43d

to be real and positive, which yields constraints onE1. That
is, DsE1,Sd2E1

2 is a quadratic inE1, with possible loci shown
in Fig. 2. Unphysical solutions lie in the shaded region. The
solid curves correspond tog2−4ab.0 (thick curve) and
g2−4ab,0 (thin curve) for 4bS.0, in which case eitherE1
is unbounded orE1,E1c. The dashed curves correspond to
g2−4ab.0 (thick) and g2−4ab,0 (thin) for 4bS,0, in
which case eitherE1.E1c or the boundary vanishes(i.e., E1
cannot take any value). The corresponding cutoff is

E1cscd =ÎU 4bsT2dS
4asT1dbsT2d − gsT1,T2,ccd2U . s44d

Extrema inE1cscd lie at c solutions of]g /]c=0. The solu-
tion g=0 does not correspond to a maximum inE1c.

For fixedE1, S, T1, T2, andf upper and lower bounds of
E2 can be found by locating solutions ofdE2/dc=0; these
occur at

dE2

dc
= − E1E2

]g

]c
Ys2bE2 + E1gd = 0. s45d

Neglecting the special casesE1=0, E2=0, or 2bE2+E1g
=`, solutions for Eq.(45) lie at

FIG. 2. Schematic plot ofD2E1
2, with D given by Eq.(43). The

solid curves showg2−4ab.0 (thick) and g2−4ab,0 (thin) for
4bS.0, the dashed curves showg2−4ab.0 (thick) and g2

−4ab,0 (thin) for 4bS,0. Unphysical solutions lie in the shaded
region.
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tancI = − S T1 + T2

1 + T1T2
Dtanf, s46d

tancU = S T1 − T2

T1T2 − 1
Dcotf, s47d

tancQ = S T2 − T1

T1T2 − 1
Dtanf, s48d

tancV = − S1 + T1T2

T1 + T2
Dtanf. s49d

Finally, we note that the functions tanc and tang arep pe-
riodic, so there are two solutions with −p,cøp for which
]g /]c=0, corresponding to four solutions forE2. Two of
these solutions are negative, and can therefore be discarded.
To remove the degeneracy ofcS over a 2p interval, we ar-
bitrarily label the solution lying atg,0 asc=cS with g−

=gscSd, and label the solution lying atg.0 as c=cS±p
with g+=gscS±pd. The remaining physical solutions forE2

yield the constraints

ug−u − D

2ubu
ø

E2sb . 0,D2 , g2d
E1

ø
ug−u + D

2ubu
, s50d

− ug+u + D

2ubu
ø

E2sb . 0,D2 . g2d
E1

ø
ug−u + D

2ubu
, s51d

− ug−u + D

2ubu
ø

E2sb , 0,D2 . g2d
E1

ø
ug+u + D

2ubu
, s52d

ug+u − D

2ubu
ø

E2sb , 0,D2 , g2d
E1

ø
ug+u + D

2ubu
. s53d

For a givenE1, a, b, andS the upper and lower solutions to
E2 therefore satisfyc=cc andc=cc±p, respectively.

In summary, bothE1 and E2 integration boundaries can
hence be parametrized by solutions of]g /]c=0; i.e., E1
ùE1csccd or E1øE1csccd, and

f lsE1,ccd ø E2 ø fusE1,ccd, s54d

where f lsE1,ccd, fusE1,ccd are the uppers+d and lowers−d
physical solutions to Eq.(42). The anglecc is that which
maximizes the domain of integration in bothE1 andE2. For
instance, iff=0, thencI =0,p for I, corresponding to vector
parallel and antiparallel addition. IfT1=T2, thenE1csccd=`,
and

hE1
2 . Ij, E1 − ÎI ø E2 ø E1 + ÎI , s55d

hE1
2 , Ij, − E1 + ÎI ø E2 ø E1 + ÎI . s56d

These were the boundary conditions used by Cairnset al.
[23] in their investigation of the intensity statistics of two
vectorially superposed wave populations where the bound-
aries E2=E1±ÎI correspond to antiparallel vector addition,
andE2=ÎI −E1 to parallel vector addition. Indeed, provided

that the polarization angle and axial ratio of the two modes
are identical(f=0 andT1=T2, respectively), our analysis for
PI reduces to that of Cairnset al. [23].

By locating zeros of]c /]E2, the boundaries inc can be
similarly studied. For constantE1, f, T1, T2, and S,
]c /]E2=1/]E2/]c, and so from Eq.(45) zeros of]c /]E2 lie
at g=−2bE2/E1. Using Eq.(42) for E2 we find that the zeros
of dc /dE2 correspond to real solutions of

g = − 2
b

ubu
Îab − bS/E1

2. s57d

Immediately, we note that eitherE1
2ùS/a for b.0 for E1

2

øS/a for b,0 must also be satisfied for a zero indc /dE2
to exist. As the functiongscd represents a superposition of
sine and/or cosine functions of the same periodicity, it can
always be represented as a single sine or cosine function of
an appropriately shiftedc. Given thatgscd is a local mini-
mum atc=cS, we concludegsc8=c−cSd will be an even
function ofc8. Finally, using Eqs.(25)–(28) to substitute for
g, Eq. (57) can be solved forc and hencec8.

Boundaries insE1,E2d andc can similarily be established
for the degree of circular polarizationv=V/ I. For brevity, we
list only salient differences to theS boundaries. For a given
E1, T1, T1, andf, the equationv=V/ I can be rearranged as a
quadratic inE2 with only one unknown:c8. That is,

E2
2b̄sc8d + E2E1ḡsc8d + E1

2āsc8d = 0, s58d

where āsc8d=aV−vsc8daI, b̄sc8d=BV−vsc8dbI, and ḡsc8d
=gVsc8d−vsc8dgIsc8d. Equation(58) is homogeneous in the
field strengths, and so two conclusions follow:E2 boundaries
are straight lines through the origin, and zeros ofdc /dE2 lie

at ḡ=−2sb̄ / ub̄udÎāb̄, similar to Eq.(57) with a↔ ā, b↔ b̄,
andS↔0.

D. Limiting properties of the integrand

The PDFsPscd, PsE1
2d, andPsE2

2d are all finite, whereas
the JacobianuE1E2]g /]cu for PsSd has zeros atc=cc, E1=0,
andE2=0. In this work, the behavior of the Jacobian is ex-
amined by an expansion ofE2

2 and]g /]c about the boundary
c=cc. This yields a limiting form for the Jacobian along an
E2 interval of fixed E1 local to the c=cc boundary. The
limiting behavior along anE1 interval with fixedE2 is then
obtained by interchanging theE1 andE2 labels. We also note
that the valuesE1=0 andE2=0 correspond to points along
the boundaryc=cc, and are hence implicitly included in a
c=cc expansion.

Noting that the boundaryc=cc is defined by solutions to
]g /]c=0, expansions ofE2

2 and]g /]c aboutc=cc (where
]E2/]c=0) to second order inc−cc can be written

E2
2 = E2c

2 + H ]2E2
2

]c2 J
cc

sc − ccd2 s59d

=E2c
2 + H2E2

]

]c
S ]E2

]g

]g

]c
DJ

cc

sc − ccd2 s60d
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=E2c
2 + H 2

E2

]E2

]g

]2g

]c2J
cc

E2
2sc − ccd2 s61d

and

]g

]c
= H ]2g

]c2J
cc

sc − ccd. s62d

Rearranging Eq.(61) we find,

H ]2g

]c2J
cc

sc − ccd2 = S ]g

]c
D2YH ]2g

]c2J
cc

, s63d

to Osc−ccd2, since ]g /]c is itself of Osc−ccd. Conse-
quently, Eq.(61) can be rewritten as

E2
2 = E2c

2 + H 2

E2

]E2

]g
Y ]2g

]c2J
cc

E2
2S ]g

]c
D2

. s64d

Near the boundaries of integration, we find that the integrand
of Eq. (31) thus obeys

lim
c→cc

PscdPsE1
2dPsE2

2d
uE1E2]g/]cu

~ lim
c→cc

PscdPsE1
2dPsE2

2d

uE1
ÎuE2

2 − E2c
2 uu

. s65d

Therefore, we conclude that for fixedE1 the integrand
contains a square-root singularity at the boundaryE2

2=E2c
2 .

Interchanging the labels in the above analysis, we find that
for fixed E2, the integrand also contains a square-root singu-
larity at E1

2=E1c
2 . Limiting properties of the Jacobian forPsvd

can be similarly studied, also yielding a square-root singular-
ity as c→cv at theE1 andE2 boundaries.

E. Numerical integration

Equations(31) and(33) contain integrals with square-root
singularities at the boundaries,E1c andE2c. To compute the
integrals, a Romberg[23,26] integration procedure was used
together with a change of variables at the singularities. To
ensure convergence, eachE1 andE2 interval was subdivided
into logn Emax/Emin intervals, and a change of variable used
at the overall lower and upper boundaries. For the results
presented in this work,n=10 was used.

To computePS for each value ofS, the integrand of Eq.
(31) must be evaluated for everyE1 and E2: this requires
solutions forc to Eq. (29) to be found. Solutions forc were
determined by calculatingg from

g =
S− aE1

2 − bE2
2

E1E2
, s66d

equating to theE1E2 coefficient forg in Eqs.(25)–(28), re-
arranging as a quadratic in cosc, and solving for cosc and
c. Two solutions to cosc are obtained, and thus four solu-
tions to c over a 2p interval. Finally, when computing the
contribution toPsSd in Eq. (31), the two physical solutions to
Sare selected and the integrand summed over both solutions.

For Pv the procedure involves rearranging the equation

ḡ =
− aE1

2 − bE2
2

E1E2
=

sT1 + 1dsT3 + 1d
ÎsT1

2 + 1dsT3
2 + 1d

s1 − vdcossf + cd

−
sT1 − 1dsT3 − 1d
ÎsT1

2 + 1dsT3
2 + 1d

s1 + vdcossf − cd s67d

as a quadratic in cosc, solving for c, and summing the in-
tegrand of Eq.(33) over the twoc solutions.

IV. ILLUSTRATIONS FOR THE VECTOR SUPERPOSITION
OF ORTHONORMAL MODES

In this section we compute PDFs for the polarization
properties of the superposition of two orthonormal modes.
For f=0 and T1T2=−1 the Stokes parameters[Eqs.
(25)–(28)] reduce to

I = E1
2 + E2

2, s68d

Q = sE1
2 − E2

2dST1
2 − 1

T1
2 + 1

D − 2E1E2
T1

uT1uS 2T1

T1
2 + 1

Dcosc,

s69d

U = 2E1E2
T1

uT1u
sinc, s70d

V = sE1
2 − E2

2dS 2T1

1 + T1
2D + 2E1E2

T1

uT1uST1
2 − 1

T1
2 + 1

Dcosc.

s71d

Immediately, we note that the PDF for the intensityI is
reduced to a simple convolution of field strengths:

PI =E PE1sI − E2
2dPE2sE2

2ddE2
2. s72d

When the modes are have identical axial ratios and the same
polarization angle(not orthonormal), PI is not given by the
convolution in Eq. (72). Instead, the detailed analysis of
Cairnset al. [23] follows.

For orthonormal modessT1T2=−1d the expressions forV
andQ are related by the field interchange mapping

E1 ↔ E2, s73d

E2 ↔ E1, s74d

T̄1
2 − 1

2TI 1

↔ 2T1

T1
2 − 1

, s75d

T̄1

uT̄1u
↔ T1

uT1u
, s76d

under whichQ̄↔V and soPQ̄↔PV.
In this work, various combinations of the orthonormal

wave populations in Table I are superposed for illustrative
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purposes. While the theory is developed for an arbitrary
choice of distribution function, for illustrative purposes, we
have chosen lognormal field strength distributions function,
for E1 and E2. The six cases correspond to calculations for
the different polarization states(elliptical, circular, and lin-
ear) performed for two pairs of wave populations. One wave
pair has a dominant(more intense) population and a weaker
population, whereas the other case has two identical wave
populations. The field strength distributions have been cho-
sen to allow direct comparison with earlier vector convolu-
tion calculations[23]. The case of circular mode polarization
is particularly relevant for the propagation of electromag-
netic modes in free space, which propagate as oppositely
circularly polarized waves with the same refractive index[5].

A. Boundaries of integration

Prior to calculation ofPI, PU, PQ, PV, andPv the bound-
aries of integration inE space must be computed using the
analytic procedures described in Sec. III. For orthonormal
modes,PI reduces to a line integral insE1,E2d space, with
E1=ÎI −E2

2. For PV, PQ, PU, andPv we illustrate the bound-
aries for a few selected values from the orthonormal modes
of Table I. Importantly, the boundaries inE space are inde-
pendent of the choice of field strength and phase difference
distributions. Some properties of the boundaries are also fur-
ther described in Sec. IV B when describing features of the
distribution functions.

1. Elliptically polarized modes

For cases(i) and(ii ) aV.0, bV,0, so the boundaries for
PV are described analytically by the intervals(52) and (53).
Figure 3(a) plots the boundaries of integration insE1,E2d
space forPVsV=5d in cases(i) and(ii ). For convenience, we
hereafter drop the value assignment within the brackets, so
that PSs5d is shorthand forPSsS=5d. In Fig. 3(a) contours of
equal uc8u= uc−cVu are drawn. The gray scale at the top of
Fig. 3(a) identifies the value ofuc−cV8 u in (a), and the solid
lines define the analytic boundary. In Figs. 3(b) and 3(c) the
correspondinguc8u domain is plotted againstE1 and E2, re-
spectively. In Fig. 3(b) with E1=2.4, for instance, solutions
for E2 of Eq. (71) can only be found providinguc−cV8 u lies in
the range 1.97, uc−cV8 uøp. In Fig. 3(c) with E2=2.4, how-

ever, solutions forE1 of Eq. (71) can be found for anyuc
−cV8 u,p.

Inspection of inequality(50) shows that the stationary
points of gV are located atc=0, p with cV=0 the solution
that minimizesgV. For E1øÎV/a, the lower and upperE2
boundaries lie on theuc8u=p contour [see Eq.(53)]. For
E1ùÎV/a the lower and upperE2 boundaries lie on the
uc8u=0 and uc8u=p contours[see Eq.(52)]. This explains
why the ucu domain in Fig. 3(b) for E1ø ÎsV/ad is local to
ucu=p. Finally, under the field interchange mappingE1↔E2,

E2↔E1, T1↔T2, T2↔T1, with c̄8↔c8+p, we obtain V̄
=−V, so the boundary forV=−5 is a reflection of theV=5

boundary throughE1=E2. The domain forc̄8 as a function of
E2 is identical to that in Fig. 3(b), with cV=p. Similarly, the

domain forc̄8 as a function ofE1 is identical to that in Fig.
3(c).

Due to the field interchange mapping of Eqs.(73)–(76),
under whichQ̄=V, the boundaries forQ are related to those
of V: the boundary forQ=−5 is similar to that ofV= +5, and
the boundary forQ=5 a reflection ofQ=−5. Finally, forU,
the coefficientsaU=bU=0, and so the boundary of integra-
tion is described by the hyperbolauUu=2E1E2.

For the degree of circular polarization, Eq.(67) simplifies
to

ḡ = 2
T1

uT1uST1
2 − 1

T1
2 + 1

Dcosc. s77d

Stationary points ofḡ lie at c=0, p, with cv=p the solution
that minimizes Eq.(77). For cases(i) and (ii ) with v=0.85,

ā,0 andb̄,0, so the boundaries forE2 are described ana-

lytically by the interval(53), with b↔ b̄, g↔ ḡ, and D̄= ḡ2

−4āb̄. Figure 4(a) plots the boundaries of integration for
Pvs0.85d for cases(i) and (ii ). In these instances the lower

TABLE I. Illustrative lognormal wave population field charac-
teristics, and polarizations. The two components in cases(i), (iii ),
and(v) have equal field strength distributions, with mean and stan-
dard deviationmA=1.2 ln 10,sA

2 =0.2 ln 10, while the two compo-
nents in cases(ii ), (iv), and(vi) have unequal field strengths, where
the second component is dominant withmB=2.1 ln 10, sB

2

=0.1 ln 10.

Elliptic Circular Linear

(i) (ii ) (iii ) (iv) (v) (vi)

T1 0.5 0.5 1 1 ` `

T2 −2 −2 −1 −1 0 0

FIG. 3. (a) Contour plot of the integration boundaries inE space
for V=5 for the elliptically polarized modes of cases(i) and (ii ).
The horizontal gray scale denotes the value ofuc8u= uc−cVu, and the
solid thick line shows the analytic boundaries of integration. The
hatched regions in(b) and (c) describe the integrable range ofuc8u
as functions ofE1 andE2, respectively.
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and upper boundaries are both described by thec8=0 con-
tour, and soc8 solutions are degenerate over ap interval.
Physically, the two different solutions at commonc8 andE1
values in Fig. 4(a) trace polarization ellipses with the same
T, but different intensity and polarization angle. Analytically,
this degeneracy will occur wheneverD2,ḡ2, given by the
upper and lower boundary intervals of(50) and (53), with

b↔ b̄, g↔ ḡ, andD̄↔D. For orthonormal modes, the use of

D̄2,ḡ2 yields v2.vsv1+v2d−v1v2=v1
2, where v1 and v2

=−v1 are the degrees of circular polarization of the two com-
ponent waves. That is,c8 solutions will be degenerate over a
p interval whenever the magnitude of the total degree of
polarization is larger than the magnitude of the degree of
circular polarization of either mode. A similar fourfoldc
degeneracy can occur for local regions inE space forV and
Q, where DsE1d2,g2 [e.g., theE1øÎV/a region in Fig.
3(a)]. ExceptingS=0, however, it is only forv that the de-
generacy extends over allE space, where theE1 dependence

of D̄ vanishes.
The uc8u domain, shown versusE1 and E2 in Figs. 4(b)

and 4(c), respectively, can be quantitatively determined by
equating the solutions ofdc /dE2=0 [given by ḡ

=−2b̄ / b̄Îāb̄], to Eq. (77), and solving forc8. For cases(i)

and (ii ) this yieldsc8,arccosfÎāb̄sT1
2+1d / sT1

2−1dg.p /3.
More generally, for the degree of circular polarization of

arbitrary orthonormal modes, the discriminantD̄2 reduces to

D̄2=4sv2−1d at the boundariessc8=0,pd. At these locations,
uvu=1, and so the expression forPv reduces to a line integral

over E2=E1ḡ / s2b̄d.

2. Circularly and linearly polarized modes

Expressions for the Stokes parametersI and U arising
from the superposition of circular and linear polarization
waves[cases(iii )–(vi) in Table I] are identical to the preced-
ing results for elliptical polarization. For circularly and lin-
early polarized waves, expressions forQ and V are simply

related: QsT1=1d=−VsT1=`d=−2E1E2cosc, and QsT1=`d
=VsT1=1d=E1

2−E2
2. The boundaries of integration for

PQsT1=1d andPVsT1=`d are thus identical to the boundaries
for U, but with a change ofcS. Finally, the PDFsPVsT1

=1d and PQsT1=`d reduce to line integrals, withE2

=ÎE1
2−V andE2=ÎE1

2−Q, respectively.

B. Distribution functions for the Stokes parameters and the
degrees of polarization

Figure 5 shows the distributionsPE1
2, PE2

2, andPI for the
cases shown in Table I. The field strength convolution calcu-
lations agree with those of Cairnset al. [23] for two similar
distributions (Fig. 6 in that work). The dominance of the
resultant PDF ofI =E1

2+E2
2 by one field population is ex-

pected given the distributions used, for whichkE1
2l! kE2

2l,
and soI .E2

2.
Figure 6 showsPU for all cases in Table I. For orthonor-

mal modes, the expression forU is independent ofuTu, so the
PDF is independent of the mode polarization. The two weak
peaks in the PDF[labeled maxsPUd in the figure] correspond
to the lower singular boundary sweeping through statistically
significant regions ofE space, as shown in Fig. 7. Physically,
this corresponds to the superposition of wave packets with

FIG. 4. Similar to Fig. 3 but showing the integration boundaries
in E space forv=0.85, together with the ranges ofuc8u as functions
of E1 andE2.

FIG. 5. PE2, PI for orthonormal modes in Table I. Thick and thin
dashed curves correspond to the field PDFsPE1

2 andPE2
2, while the

thick and thin solid curves correspond toPI for the convolution of
PE1

2 with PE1
2 [cases(i), (iii ), and (v) in Table I] and PE1

2 with PE2
2

[cases(ii ), (iv), and(vi) in Table I], respectively.

FIG. 6. PU for orthonormal modesT1=0.5, T2=−2. Solid and
dashed curves describePUsU.0d andPUsU,0d, respectively, for
case(i) (thick) and case(ii ) (thin) of Table I.
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E1.kE1l, E2.kE2l with phase differencep /2. The nonzero
limit for PUs0d occurs because the region of integration,
edE1

2dE2
2 converges to a fixed nonzero value asU→0.

Figure 8 showsPV for the three different wave polariza-
tions [Fig. 8(a) is elliptic, Fig. 8(b) circular, and Fig. 8(c)
linear] for the two different field strength PDF combinations.
For cases in which the component field strength PDFs are
equal and/or the polarization linear,PV is symmetric about
V=0. In Figs. 8(a) and 8(b), the peak forV,0 lies near the
mean of the superposed wave populationskVl=kV1l+kV2l, as
denoted by the markers. In Fig. 8(c), which corresponds to
linear polarization, the peaks ofV lie near but not atV=0.
For linearly polarized modes, the expression forV is related
to U through U /V=tanc, so the boundaries forV are the
same as those forU, but with a phase shift inc. The peaks in
V thus correspond to the lower singular boundariessc
=p /2d sweeping through statistically significant regions ofE
space, as in Fig. 7. Finally, in all examples, the nonzero limit
for PVs0d occurs for the same reason asPUs0d=0: conver-
gence of the boundaries inE space to enclose a fixed nonzero
region.

Figure 9 showsPQ. The features for the three different
polarization cases can be understood by noting that the ex-
pressions forV andQ are related by the interchange mapping
of Eq. (76). For case(i), theV,0 andQ.0 PDFs are quali-
tatively identical, with the slight shift inkQl accounted for
by the change inT1 in the mapping of Eq.(76). For linearly
and circularly polarized modes the relationship betweenQ
and V is transparent through the mappingQsT1=1d=−VsT1

=`d ;QsT1=`d=VsT1=1d. This explains why Figs. 8(b),
9(c), 8(c), and 9(b) are identical.

Figures 10, 12, and 13 plot the PDFs for the degree of
circular and linear polarization for the three different types of
wave polarizations. For case(i) of Table I, shown in Fig. 10,
the degree of circular polarization is dominated by the stron-
ger field, with meankvl=−0.8. There is also, however, a split
in the peak of the PDF, with peaks slightly below the mean
sv=−0.85d and above itsv=−0.75d). Analytically, these oc-
cur because the upper singular boundary of integration
sweeps through statistically significant regions ofE space as
v is perturbed from the mean of the dominant modekv2l
=−0.8. Physically, the two peaks correspond to the superpo-
sition of initially [at t=0, where all phases in Eq.(3) have

FIG. 7. Log-log contour plot of the productPE1
2 PE2

2 for wave
modes with a dominant field distribution(solid) and equal field
strength distributions(dashed). Overlaid are the lower singular
boundaries of integration forPU at the peaks inPU.

FIG. 8. PV for orthonormal modes of(a) elliptic, (b) circular,
and (c) linear polarizations. Thick and thin curves describe the su-
perposition of two modes with equal field strength distributions
[cases(ii ), (iv), and(vi) of Table I], and two modes where one mode
has a dominant field strength distribution[cases(ii ), (iv), and(vi) of
Table I], respectively. Solid and dashed curves describePVsV.0d
and PVsV,0d, respectively. The dash-dotted lines show the posi-
tions of peakPV.

FIG. 9. PQ for orthonormal modes of(a) elliptic, (b) circular,
and (c) linear polarizations. Thick and thin curves describe the su-
perposition of two modes with equal field strength distributions
[cases(ii ), (iv), and(vi) of Table I], and two modes where one mode
has a dominant field strength distribution[cases(ii ), (iv), and(vi) of
Table I], respectively. Solid and dashed curves describePQsQ.0d
and PQsQ,0d, respectively. The dash-dotted lines show positions
of peakPQ.

FIG. 10. Plot of (a) Pv and (b) Prl
for elliptically polarized

modesT1=0.5,T2=−2. Thick and thin solid lines describe PDFs for
cases(i) and (ii ) of Table I, respectively.
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been accounted for] parallel and antiparallel vectors near the
mean field strengths of each wave population. This is shown
in Fig. 11, where the boundaries of integration are overplot-
ted on a contour plot of the numerator of the integrand,
PE1

2 PE2
2 . For v=−0.85 the upper boundary is atc=0, corre-

sponding to the addition of two initially parallel vectors,
while the upper boundary forv=−0.75 is atc=p, corre-
sponding to the addition of two initially antiparallel vectors.
In both cases the upper boundaries pass near the peak in the

distribution functions. Atv=−0.8 (whereb̄=0), correspond-
ing to the circular polarization of the dominant mode, the
lower and upper boundaries lie onE1=0 andE2=−E1ā / ḡ.

The two peaks in the PDF for the degree of linear polar-
ization in Fig. 10(b) correspond to the two peaks in the PDF
for the degree of circular polarization Fig. 10(a). For the
superposition of modes with equal field strength PDFs,Pv is
symmetric aboutv=0, with a peak atv=0. This corresponds
to a PDF biased towardr l =1.

In Fig. 12 PDFs for the degree of circular and linear po-
larization are shown for circularly polarized wave modes.
When combining wave populations of unequal field strength
[case(iii ) of Table I], the PDF for the degrees of polarization
are skewed toward the dominant field, thus explaining the
peak in Pv near v=−1. The superposition of orthonormal
circularly polarized waves of equal field strength PDFs

yields Pv symmetric aboutv=0 and with peak atv=0, cor-
responding to a peak inPrl

at r l =1.
Finally, Fig. 13 plots the degrees of circular polarization

for linearly polarized modes. As for case(i), shown in Fig.
10, the PDF of the central peak atv=0 is dominated by the
stronger field. The two peaks either side ofv=0 result from
the same phenomenon described for elliptically polarized
modes.

V. CONCLUSIONS

In this work we have described the polarization statistics
of the superposition of multiple wave populations. Each
wave population was considered to be a coherent mode with
fixed axial ratio and polarization angle, and the electric field
strength and phase were taken to be random variables with
arbitrary distributions. Our analysis builds upon the treat-
ment of Cairnset al. [23], in which two wave vectors with
fixed polarization angle but random phase difference were
superposed. Using this representation, integral expressions
were developed for the PDFsPS of the Stokes parametersS
(a label forI, U, Q, andV), as well as the degrees of linear
and circular polarization of the superposed wave popula-
tions. For two wave populations, it was shown that the inte-
gral for each Stokes PDFPS contains a square-root singular-
ity in electric field space. Finally, predictions for the Stokes
parameters and degrees of polarization were computed for
three different component wave polarizations(elliptic, circu-
lar, and linear), and two different lognormal field strength
PDFs(a dominant mode and equal field strength PDFs).

The present work differs from earlier treatments(e.g.,
Hurwitz [7], Barakat[8,9], and Eliyahu[10]), which super-
poseEx andEy correlated Gaussian fields, where each field
has a random but uniformly distributed phase. Their analysis
is equivalent to our treatment in the special case that the
plasma modes are linearly polarized, the phases are uni-
formly distributed, the electric fields have a Gaussian distri-
bution, and the average value ofV is zero for the superposed
waves.

The main results of the present work can be summarized
as follows.

(1) The superposition of two orthonormal modes leads to
the superposition of individual intensities for the total inten-

FIG. 11. Log-log contour plot ofPE1
2 PE2

2 . Overlaid are the sin-
gular boundaries of integration forv=−0.8 (solid), v=−0.75 (dot-
ted), andv=−0.85 (dashed). The upper boundary forv=−0.8 is at
infinity.

FIG. 12. Plot of(a) Pv and(b) Prl
for circularly polarized modes

T1=1, T2=−1. Thick and thin solid lines describe PDFs for cases
(iii ) and(iv) of Table I, respectively. The vertical scale for the thick
curve in (a) is on the right-hand vertical axis.

FIG. 13. Plot of(a) Pv and (b) Prl
for linearly polarized modes

T1=`, T2=0. Thick and thin solid lines describe PDFs for cases(v)
and (vi) of Table I, respectively.
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sity I =E1
2+E2

2, and therefore a convolution ofPE1
2 andPE2

2 for
PI.

(2) For orthonormal mode pairs, a simple mapping was
found to relate the expressions forQ andV.

(3) For orthonormal modes, asU, Q, andV approach zero,
the PDFsPU PQ, andPV converge to nonzero values, corre-
sponding to convergence of the boundaries of integration in
E space to enclose a nonzero region.

(4) For wave populations in which there is a dominant
field, the PDF for the Stokes parameters in statistically sig-
nificant regions is dominated by the dominant wave popula-
tion. The meankSl is confirmed to be equal to the sum of the
mean of the Stokes parameters of then individual wave
populations. That is,kSl=kS1l+kS2l+¯ +kSnl.

(5) Except for circularly polarized light, the addition of a
weaker field leads to a double peak of the PDF of the degree
of circular polarization. Physically, the two peaks correspond
to the superposition of initially parallel and antiparallel vec-
tors near the peak field strength of each wave population. For
circularly polarized light, the effect of the weaker population
is to shift the PDF peak forPv away fromuvu=1, and move
the PDF peak forPrl away fromur lu=0.

(6) The superposition of wave vectors with equal field
strength PDFs gives rise to PDFs forU, Q, andV symmetric
aboutU=0, Q=0, andV=0, with expectation values of zero,
but peaks at nonzeroU, Q, and V. Physically, these peaks

correspond to the superposition of vectors near peak field
strength, and initiallyp /2 out of phase.

(7) The degree of circular polarization of the superposed
mode can exceed in magnitude the degree of circular polar-
ization of either component mode. In this case, there exist
four sets of orthonormal mode pairs, each with the same
phase difference and one common field strength, which su-
perpose to form a wave with the same degree of circular
polarization.

(8) Comparison between the predictions for the degree of
linear and circular polarization(e.g., Figs. 10 and 13) and the
polarization properties of the component waves suggests that
the interpretation of polarity resolved data(e.g., from pul-
sars) is not trivial. In part, the reason is that the multiple
peaks predicted are not at the same locations as for the com-
ponent distributions. Even when the field strength of one
mode is fixed, however, there are multiple ways to combine
mode pairs with the same phase difference to obtain the same
degree of circular polarization. That is, the problem is degen-
erate in the phase difference and fixed field strength of one
mode. Investigating such subtle effects in real data is there-
fore challenging, and of considerable interest.
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